Analysis of Surface Roughness and Micro-hardness in Roller Burnishing of Aluminum Alloy 6061

author

  • Amin Poursafar Department of Mechanical Engineering, Dehaghan Branch, Islamic Azad University, Dehaghan, Isfahan, Iran
Abstract:

Burnishing is a chip-less finishing process, in which a hard roller or ball presses the surface layer of part to perform plastic deformation in the surface layer and produce improved finish, enhanced hardness and compressive residual stresses on the surface of special materials such as Aluminum and Brass. In the following research, the effect of input parameters such as feed rate, cutting speed, number of passes , burnishing force and cooling system which is applying by minimum quantity of lubrication (MQL) on surface roughness and micro-hardness in roller burnishing of Aluminum alloy 6061 has been investigated. Taguchi method is used for design of experiments and special burnishing tool is used for this research. The optimization results show that the effect of feed rate and burnishing speed is significant on surface roughness and burnishing force and the number of passes plays important role in micro-hardness. The minimum surface roughness in burnishing of aluminum alloy 6061 was 0.138 μm and the maximum was 0.475 μm. The maximum micro-hardness in roller burnishing Aluminum alloy 6061was found 122 HB and the minimum was 100 HB.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Experimental Investigation of the Influence of Burnishing Parameters on Surface Roughness and Hardness of Brass Alloy

Nanoparticles of iron oxide (Fe3O4) were obtained by Coprecipitation with synthesis time of 30, 60 and 90 min. The morphology of the samples was investigated by scanning electron microscopy (SEM) and structural characteristics were obtained by X-ray diffraction (XRD). The crystallite size was calculated from the spectrum X-ray diffraction with the application of the Scherrer equation and Winfit...

full text

Optimization of Burnishing Parameters by DOE and Surface Roughness, Microstructure and Micro Hardness Characteristics of AA6061 Aluminium Alloy in T6 Condition

Surface finish and surface hardness of the components play vital role in quality of products/components, in general and failure resistance, in particular. One of the finishing process that involve surface plastic deformation and introduces compressive residual stresses and thereby improve fatigue resistance is “Burnishing”. Even though the burnishing process is widely employed, its process para...

full text

the stady and analysis of rice agroclimatology in lenjan

the west of esfahan province, iran, is one of the most important agricultural areas throughout the country due to the climate variability and life-giving water of zayanderood river. rice is one of the major and economic crops in this area. the most important climatic elements in agricultural activities which should be considered include temperature, relative humidity, precipitation and wind. so...

15 صفحه اول

the analysis of the role of the speech acts theory in translating and dubbing hollywood films

از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...

15 صفحه اول

Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel

Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integri...

full text

Void growth in 6061-aluminum alloy under triaxial stress state

In numerous metals and alloys, ductile fracture involves void nucleation, growth, and coalescence. In this contribution, void growth has been quantitatively characterized in an extruded 6061-wrought Al-alloy as a function of stress state in notch tensile test specimens. Digital image analysis and Stereology have been used to estimate the volume fraction and three-dimensional number density of v...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  79- 86

publication date 2018-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023